快捷搜索:
您的位置:bv1946伟德入口 > 科学 > 再持久点,高性能中空界面微结构新型铝负极材

再持久点,高性能中空界面微结构新型铝负极材

2019-07-31 17:04

bv1946伟德入口 1

深圳先进院研发高性能中空界面微结构铝负极材料

bv1946伟德入口,高性能中空界面微结构新型铝负极材料问世

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队成功研发出一种具有中空界面结构的金属铝箔负极材料,并应用于高效、低成本双离子电池。

唐永炳在中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心分析团队的实验数据。丁宁宁摄

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队成功研发出一种具有中空界面结构的金属铝箔负极材料,并应用于高效、低成本双离子电池。

本报讯 近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心研究员唐永炳及其研究团队成功研发出一种具有中空界面结构的金属铝箔负极材料,并应用于高效、低成本双离子电池。

唐永炳介绍道,这种新型结构有效解决了廉价金属负极材料在充放电过程中的体积膨胀、循环性能差的问题。相关研究成果泡沫纸状界面设计形成的超稳定固态电解质层及其在高效双离子电池中的应用已在线发表于材料科学顶级期刊Advanced Materials上。

“电量低于80%不敢出门。”随着大屏智能手机普及,许多人患上了这种“电池焦虑症”。于是,近年来,充电宝日渐成为手机的最佳拍档。然而,有人却力图改变智能手机依赖充电宝的局面。

唐永炳介绍道,这种新型结构有效解决了廉价金属负极材料在充放电过程中的体积膨胀、循环性能差的问题。相关研究成果泡沫纸状界面设计形成的超稳定固态电解质层及其在高效双离子电池中的应用已在线发表于材料顶级期刊Advanced Materials上。

唐永炳介绍道,这种新型结构有效解决了廉价金属负极材料在充放电过程中的体积膨胀、循环性能差的问题。相关研究成果泡沫纸状界面设计形成的超稳定固态电解质层及其在高效双离子电池中的应用已在线发表于材料科学顶级期刊Advanced Materials上。

随着便携式电子设备和电动汽车市场规模的快速发展,人们对于高能量密度、低成本二次电池的需求日益迫切。目前,商用锂离子电池多采用石墨类负极材料,其理论比容量仅为372 mAh g-1,且压实密度较低,限制了锂离子电池能量密度的进一步提升。

近日,中国科学院深圳先进技术研究院集成所功能薄膜材料研究中心唐永炳研究员及其团队成功研发出一种新型高性能、低成本的钾型双离子电池技术,该成果日前在线发表于国际材料著名期刊《先进材料》上。

随着便携式电子设备和电动汽车市场规模的快速发展,人们对于高能量密度、低成本二次电池的需求日益迫切。目前,商用锂离子电池多采用石墨类负极材料,其理论比容量仅为372 mAh g-1,且压实密度较低,限制了锂离子电池能量密度的进一步提升。

随着便携式电子设备和电动汽车市场规模的快速发展,人们对于高能量密度、低成本二次电池的需求日益迫切。目前,商用锂离子电池多采用石墨类负极材料,其理论比容量仅为372 mAh g-1,且压实密度较低,限制了锂离子电池能量密度的进一步提升。

据悉,通过与锂离子的合金化/去合金化反应,廉价金属负极通常具有更大的比容量,有望获得更高的能量密度。“其中铝的理论比容量高达2234 mAh g-1 ,且储量丰富,价格低廉。”唐永炳说,“然而,铝负极在电池反应过程中会产生一定的体积膨胀,从而影响电池的循环稳定性。”

一年时间发表多项突破性研究成果

据悉,通过与锂离子的合金化/去合金化反应,廉价金属负极通常具有更大的比容量,有望获得更高的能量密度。“其中铝的理论比容量高达2234 mAh g-1 ,且储量丰富,价格低廉。”唐永炳说,“然而,铝负极在电池反应过程中会产生一定的体积膨胀,从而影响电池的循环稳定性。”

据悉,通过与锂离子的合金化/去合金化反应,廉价金属负极通常具有更大的比容量,有望获得更高的能量密度。“其中铝的理论比容量高达2234 mAh g-1 ,且储量丰富,价格低廉。”唐永炳说,“然而,铝负极在电池反应过程中会产生一定的体积膨胀,从而影响电池的循环稳定性。”

基于上述考虑,唐永炳及其团队成员秦盼盼、王蒙、李娜等人成功研发出一种具有中空界面微结构的金属铝箔材料,同时对其进行活性材料与集流体的一体化设计,并将其成功应用于新型高效、低成本双离子二次电池。

这些硕果的背后,是唐永炳和团队成员一天工作14个小时,把一年的时间当作两年来用才有的突破……

基于上述考虑,唐永炳及其团队成员秦盼盼、王蒙、李娜等人成功研发出一种具有中空界面微结构的金属铝箔材料,同时对其进行活性材料与集流体的一体化设计,并将其成功应用于新型高效、低成本双离子二次电池。

基于上述考虑,唐永炳及其团队成员秦盼盼、王蒙、李娜等人成功研发出一种具有中空界面微结构的金属铝箔材料,同时对其进行活性材料与集流体的一体化设计,并将其成功应用于新型高效、低成本双离子二次电池。

唐永炳说:“我们采用结构设计、改造后的铝箔同时作为负极活性材料和集流体,膨胀石墨为正极,并采用常规电解液。相对于传统锂离子电池,该新型二次储能电池具有更高的工作电压(平均放电电压为~4.2 V),同时显著提升了活性材料占比和能量密度,并大幅降低了制造成本,且环境友好。”

“这一次我们发现钾离子电池技术,是2016年3月团队首次发现双离子电池技术后,围绕该技术各项性能做出优化和继续前瞻布局的结果。”外表干练的唐永炳向科技日报记者娓娓道来。

唐永炳说:“我们采用结构设计、改造后的铝箔同时作为负极活性材料和集流体,膨胀石墨为正极,并采用常规电解液。相对于传统锂离子电池,该新型二次储能电池具有更高的工作电压(平均放电电压为~4.2 V),同时显著提升了活性材料占比和能量密度,并大幅降低了制造成本,且环境友好。”

唐永炳说:“我们采用结构设计、改造后的铝箔同时作为负极活性材料和集流体,膨胀石墨为正极,并采用常规电解液。相对于传统锂离子电池,该新型二次储能电池具有更高的工作电压(平均放电电压为~4.2 V),同时显著提升了活性材料占比和能量密度,并大幅降低了制造成本,且环境友好。”

此外,中空微结构的界面设计使锂—铝合金的发生区域,成功限制在中空界面中,从而有效缓解铝负极在合金化过程中产生的体积膨胀,获得了高度稳定的SEI膜。

就在一年前,团队发现的重要科研成果“一种新型高能量密度铝—石墨双离子电池”。该成果成为能源材料领域著名期刊《先进能源材料》2016年度浏览量最多论文,并被新材料领域的专业媒体评选为“2016年电池领域的十大黑科技”之一。

此外,中空微结构的界面设计使锂-铝合金的发生区域,成功限制在中空界面中,从而有效缓解铝负极在合金化过程中产生的体积膨胀,获得了高度稳定的SEI膜。

此外,中空微结构的界面设计使锂—铝合金的发生区域,成功限制在中空界面中,从而有效缓解铝负极在合金化过程中产生的体积膨胀,获得了高度稳定的SEI膜。

研究结果表明,该新型电池在半小时充放电速率下循环1500圈,容量保持率高达99%;另外,即使在功率密度高达2113 Wkg-1时,该电池的能量密度仍有169 Wh kg-1(10C,充放电时间为6 分钟),远高于大多数商用的锂离子电池。

这一年来,团队成果又有什么新突破?为什么引来如此多的关注?自从发现了新型铝—石墨双离子电池技术后,唐永炳指导团队兵分三路与时间和自己赛跑。在新的双离子电池技术方面,他们攻坚克难改善铝箔负极在充放电过程中的体积变化的问题。近一年的时间,研发出“碳包覆多孔铝箔负极材料”和“高性能中空界面微结构新型铝负极材料”。通过对铝箔负极进行结构设计和界面调控,有效解决了廉价金属负极材料在充放电过程中的体积膨胀、循环性能差的问题,为产业化奠定了非常坚实的基础。

团队研究结果表明,该新型电池在半小时充放电速率下循环1500圈,容量保持率高达99%;另外,即使在功率密度高达2113 W kg−1时,该电池的能量密度仍有169 Wh kg−1(10 C,充放电时间为6 min),远高于大多数商用的锂离子电池。

研究结果表明,该新型电池在半小时充放电速率下循环1500圈,容量保持率高达99%;另外,即使在功率密度高达2113 Wkg-1时,该电池的能量密度仍有169 Wh kg-1(10C,充放电时间为6 分钟),远高于大多数商用的锂离子电池。

唐永炳指出:“我们的研究成果对廉价金属负极材料的开发具有指导意义,有望促进基于廉价金属负极的高能量、低成本二次电池的发展。”

与此同时,团队还从产业化应用的角度出发,在不改变现有锂电池正极材料的情况下,研发出“具有普适性的铝箔负极/集流体一体化设计的新型高效低成本锂电技术”,不仅可以有效降低电池自重和体积,显著提高质量和体积能量密度,而且大大降低了生产制造成本,同时具有广泛的普适性。

唐永炳指出:“我们的研究成果对廉价金属负极材料的开发具有指导意义,有望促进基于廉价金属负极的高能量、低成本二次电池的发展。”

唐永炳指出:“我们的研究成果对廉价金属负极材料的开发具有指导意义,有望促进基于廉价金属负极的高能量、低成本二次电池的发展。”

(原载于《中国科学报》 2017-03-06 第5版 创新周刊)

另一条路,则是继续在可应用的基础研究领域进行前瞻布局,他们将活性材料/集流体一体化设计的思路与双离子电池的优点相结合,并将该设计思路引入其他碱金属离子体系,分别研发出“基于廉价钠离子电解液的新型高效双离子电池技术”和“新型高效低成本钾离子电池技术”使得基于低成本碱金属离子的二次电池体系受到广泛关注。这些研究成果已收录在国际材料著名期刊《先进材料》和《先进能源材料》上。而这些硕果的背后,则是唐永炳和团队成员一天工作14个小时,把一年的时间当作两年来用才有的突破。

《中国科学报》 (2017-03-06 第5版 创新周刊)

“科学研究永无止境,不进则退。我们有了前期基础,如果不着眼未来,加快布局,机会可能会转瞬即逝。”唐永炳这样告诉记者。他们已将多项技术申请发明专利和国际专利,以备产业化布局。

这一系列的新技术是怎样破土而出?是否有产业化应用前景呢?

新技术让人着迷,但也要两条腿走路

当确认结果的重复性后,他马上召集团队,一边在基础研究做技术突破,一边着手产业化工作……

在发现电池新技术之前,今年36岁的唐永炳已在这个领域积累了近十年。

2007年,他在中科院沈阳金属所获得博士学位,凭借优异的学术成绩被导师成会明院士推荐进入香港城市大学李述汤院士的实验室,这一干就是六年。

2013年8月,在听闻与香港一江之隔的深圳成立了一个国家级的科研机构,在这里既可以从事科研,又极力推崇产业化应用,还可以指导研究生。他决定离开香港,来到基础和产业化环境更好的中科院深圳先进院。

“我希望能在深圳做出对产业有价值的科研成果。”

来到深圳的唐永炳,深受先进院的重用,受聘为功能薄膜材料研究中心主任。

入职后,唐永炳把目标瞄向新型储能材料及储能器件。他放弃了原有锂离子电池的设计思路,开始尝试改变电池结构以及反应机理,创造性地构建出了铝—石墨双离子电池,即采用廉价且易得的石墨替代目前已批量应用于锂离子电池的钴酸锂、锰酸锂、三元或磷酸铁锂作为电池的正极材料;直接采用铝箔同时作为电池负极材料和负极集流体,省去常规涂覆在集流体上的负极材料;电解液采用常规锂盐和碳酸酯类有机溶剂。

2014年底,他的学生拿着最新的实验数据向他汇报,发现这种新型铝—石墨电池不仅能可逆充放电,并且具有很高的工作电压和较高的容量,表现出典型的二次电池的特征。这位平日喜欢奇思妙想的普通科研人员,几乎不敢相信。唐永炳首先想到的就是实验结果的重复性如何?

经过多次的重复性实验以及反应机理研究发现:这种新型电池结构具有全新的双离子电池工作机理,不仅显著提高了电池的工作电压,同时大幅降低电池的质量、体积、及制造成本,从而全面提升了全电池的能量密度。当确认结果的重复性后,他马上召集团队,一边在基础研究做技术突破,一边着手产业化工作。

双离子电池技术问世后,海内外产业界和资本纷纷向唐永炳抛来橄榄枝。唐永炳清楚这项成果潜在的应用价值,他决定与深圳先进院的产业化全资子公司以及有产业资源的投资公司共同设立基于铝箔负极的新型高效低成本储能电池项目的合资公司。

就这样,这项成果在一年的时间中,不仅在基础研究方面做出了多项突破和布局;同时,迅速走出实验室,朝着产业化的方向快速发展。

桃李育人倡导团队“合伙人”机制

唐永炳团队有着一致的团队价值观:倡导集体奋斗、相互协作、按贡献分配的理念,这正是他眼中团队合伙人机制的核心。

“新时代的科研精神,我们理解为团队合伙人机制。”唐永炳笑着说。

唐永炳团队30多人,其中一半是研究生。他们有着一致的团队价值观:倡导集体奋斗、相互协作、按贡献分配的理念,这正是他眼中团队合伙人机制的核心。

他会让起主要贡献的研究生成为共同第一作者。经过仔细思考以及与中心其他同事的讨论后,团队确定了共同一作的三原则:第一,原创的思想是谁首先提出,提出后真正实施的可以做共同一作;第二,实验主要数据和图片的贡献量达到三分之一以上的可以做共同一作;第三,论文实际撰写人,且论文修改后的保有量大于70%的可以做共同一作。

回看这一年来的科研成果,团队成员张小龙、张帆、仝雪峰、季必发、圣茂华、秦盼盼、王蒙、李娜都是成果的共享者,他们有的是唐永炳的学生,有的是唐永炳的同事。

几年来,团队学生毕业后无论是科研水平,还是就业情况都可圈可点。而同样的思路,也在产业化团队中体现。这种符合新时代科研成果转化逻辑的思路,激励着团队在科研与产业化并轨前行、快速成长。

让电池更轻薄,续航能力更强,充电时间以分秒计算,而且使用材料更环保,更重要的是要有产业化可行性——这些都是这位从事新能源材料及器件研发与应用的青年科研人员多年的梦想。

唐永炳说,团队已开始中试产线研发,装修工作在稳步进行中。“现在已经进行中试产线的前期准备工作,包括物料筛选和前期可行性论证都在稳步推进中。”

(原载于《科技日报》 2017-05-15 05版)

本文由bv1946伟德入口发布于科学,转载请注明出处:再持久点,高性能中空界面微结构新型铝负极材

关键词: